
International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

AI-BASED MAZE SOLVER

 Harikrishnan Bejishkumar

Abstract— Artificial Intelligence had been changing the way humans think for several year till now. The first step towards such an

intelligent turnover took place back in 1950’s. This was not that popular at the time, due to inefficiency of processing power and in-

sufficient data on hand. But as the data and need of processing, made AI a huge developmental step in the modern world. This paper

puts forward an AI system, using python, Kivy and its associated libraries, that would have a general demand in the field of science

and technology. Here is an application of artificial intelligence, precisely a problem that is common in the field of robotics: smooth

navigation of a robot through any area with obstacles, without human interaction. In this paper, the system represents a maze simula-

tion environment and an agent working inside it to solve it using its brain.

Index Terms— Artificial Intelligence, Reinforcement Learning, Deep Learning, Neural Network, Maze solving, Q- learning,
Deep Q-Reinforcement Learning

—————————— ——————————

1 INTRODUCTION

Artificial Intelligence is growing steadily in all fields, we
see around us. It has started to represent a necessity for vari-
ous technological processes such as the automation of opera-
tions in various factories, certain robots that can make deci-
sions without human help, cars that can drive alone and so on.
AI machines that learn like children provide deep insight into
how the mind and body acts together to get the work done.
The importance of such a technology arise since pre-
programmed robot cannot adapt to complicated dynamic
problem that they may face in the real-world. Hence it is ex-
tremely important to introduce the “learning from experience”
strategy which will be the focus of this research. This strategy
is implemented using a combination of Artificial Neural Net-
work and Deep learning.

2 RELATED WORK

A. The relevant approaches to solve the dynamic decision-

making problem of the robot within a maze or any envi-

ronment with obstacles had been a thoroughly dis-

cussed topics in robotics and machine learning. Many

researchers have taken the duty of solving this problem

in the past, For example, Norbert-Brendan, K., & Cris-

tian Marius, T(2019)[1] ,had put forward an approach to

solve a single maze with a use of different maze solv-

ing algorithms like left hand rule and dead-end filling

algorithms, along with DRV8835 library. This approach

failed to implement the decision-making capability of

the robot hence fails when changing the nature of the

environment.

B. Reinforcement learning in robotics has been a chal-

lenging subject for the past few years. The ability to

equip a robot with a powerful enough tool to allow an

autonomous discovery of an optimal behavior through

trial-and-error interactions with its environment was the

cause of many deep research projects.Tiago Ribeiro and

Fernando Goncalves [3] proposed a work with two dif-

ferent Q- learning approaches and an extensive hy-

perparameter study. An approach to the autonomous

mobile robot obstacle prevention problem using rein-

forcement learning,more precisely , Q-learning was im-

plemented. The algorithm was developed for a simplis-

tically simulated Bot’n Roll ONE.The simulated robot

communicates with the control script with ROS. The

proposed obstacle avoidance method worked with sim-

ple obstacle avoidance.The simple reinforcement learn-

ing algorithm would collapse when dealing with com-

plex mazes.

C. Teng Zhao and Ying Wang [2] presented an autono-

mous navigation system based on neural networks us-

ing mobile robots. The main contribution of this work

was to develop a navigation system with the ability to

learn to adapt to unknown environments. A neural

network based autonomous robot navigation system us-

ing mobile robots was developed and validated. The

model was trained using specially designed training

samples to deal with various situations seen in the real

world. The trained neural network was then tested with

simulations and experiments that validate its feasibility.

The model was trained with certain training samples

which might not be sufficient for the robot to learn to

perform in the real-world environment.

In this paper, a modified learning algorithm called “Deep Q

Reinforcement learning” is used to train the robot which

made use of the Q values for every (state, action) pair ob-

————————————————

 Harikrishnan Bejishkumar has completed Graduate diploma program in
Mechatronics at Wellington Institute of Technology,Wellington, New Zea-
land. E-mail : haribejishkumar95@gmail.com

538

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

tained from the neural network to select and perform the

appropriate next action for a certain state that maximizes

the reward. This also gives the robot (agent) to explore and

find out different paths in the maze, like the humans find

different ways to solve a problem in the real-world. The

trade-off between exploration and exploitation is one of the

important decisions made by the agent in the environment,

this is also done during the learning period in the maze.

3 BACKGROUND STUDY

Most of the people, including engineers are not familiar with
the concept of artificial intelligence.Despite its widespresd
familiarity, AI is a technology that has influenced every walks
of life.AI has givenbirth to a new classification of age called
‘Augmented age’,which has the power to take the place of
humans in the far future.This section will walk you through
AI and all the key concepts used in the research for develop-
ing the project.

3.1 Artificial Intelligence

Artificial Intelligence or AI is the science behind program-

ming, robots to think, act and react like humans do. This

helps robots to mimic human intelligence in a way that ena-

bles machines to make traits associated with human mind

such as problem solving and decision making. The goal of

AI includes learning, reasoning, and perception.

3.2 Machine Learning

Machine learning or ML is a subset of artificial intelligence,

where machines are taught and guided through most suita-

ble way to achieve tasks. They learn from what is taught

and do the task perfectly. This is the concept that accelerated

the widespread of AI in many fields. However, in ML, they

need guidance if they make an inaccurate decision.

3.3 Deep Learning

Deep learning is a subset of Machine Learning,where the

machines have the capability to decide whether the decision-

sare accurate.It has a property that enables the machines to

approximate or predict the function and learn from its expe-

rience.

3.4 Artificial Narrow Intelligence

Artificial Narrow intelligence or ANI is a part of AI where the

machines are fed in, a data set as an input to train them. Their

intelligence is bounded into a narrow space within the inputs

provided to them. Supervised and Unsupervised learning can be

considered under ANI.

3.5 Artificial General Intelligence

Artificial General Intelligence is part of AI where the ma-

chines have no clue of data, they can grab the inputs ad learn

from the surroundings to achieve certain task. The algorithm

can be reused in many applications with certain alterations

to improve performance. Reinforcement learning can be con-

sidered as a form of AGI.

3.6 Reinforcement Learning

Reinforcement learning is a type in machine learning that

could come under Artificial General Intelligence (AGI). This

type of learning does not require any inputs\outputs or any

intermediate actions to achieve a task. Instead, it finds a

trade-off between exploration and exploitation. This make

use of an idea of training an agent in an unknown environ-

ment, which has analogy to making a child learns from

basic. [6].

In reinforcement learning, agent can take actions (At or At+1)

in an environment. A reward (Rt or Rt+1) for all actions tak-

en, whether good or bad. Reinforcement agent could per-

form the best actions possible by experience. It always se-

lects a policy from the experience gained, to maximize the

cumulative reward. This provides a broader reach to pro-

gramming the brain of a robot for all stochastic dynamic

environment. The RL agent uses the idea of Markov deci-

sion process (MDP), where it considers all the states in the

environment have a Markov property.

“A stochastic process has the Markov property if the condi-

tional probability distribution of future states of the process

(conditional on both past and present states) depends only up-

on the present state, not on the sequence of events that preced-

ed it” ("Markov property", 2020) [4]

The equation representing a Markov process is called a

Value function and are as given below:

V(s) = maxa(R(s,a) +(𝛾 × ∑𝑠′(P(𝑠, 𝑎, 𝑠′) × 𝑚𝑎𝑥(𝑉(𝑠′,𝑎′)))))

S – current state, a- current action, γ − Discount factor, s’

– next state, a’ – next action, and R- reward. [4]

Fig. 1. Reinforcement Learning

539

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

3.7 Q-Learning

Q- Learning is a model free, off-policy reinforcement learn-

ing method that investigates the environment based the

quality of actions take in each state. It is an off-policy learn-

ing because it even uses actions outside of the current policy

to explore the environment. ‘Q’ stands for quality of actions.

It considered stochastic immediate rewards for each state,

action pair (s,a) and thereby selects the action which is more

precise to accomplish a certain task. Q value of a state action

pair is the sum of reward it gets for the action plus the dis-

count factor (𝛾) multiplied by the sum of probabilities to go

to the next state multiplied by the maximum q value for the

next state. i.e.

Q(s,a) = R(s,a) + (𝛾 × ∑𝑠′(P(𝑠, 𝑎, 𝑠′) × 𝑚𝑎𝑥(V(𝑠′, 𝑎′))))

s- Current state, a- Current action, 𝛾- Discount factor, s’-

Next state, a’- Next action, R- reward.

Q- Learning works with discreate actions and state spaces,

because all the Q-values of (s,a) are recorded in a table

which serves as function approximator for the algorithm.

After learning process, the agent makes use of this table to

select the perfect action at a certain state. Each time it calcu-

lates a new value, the Temporal Difference (TD loss) is cal-

culated. Temporal difference or loss function is the differ-

ence in loss of the old q value to a target q value. This func-

tion is used to update the Q table thereby minimizing the

TD loss, which is given below:

Where, Q (St, At) is the predicted q value or old q – value and α

– Learning rate defines the rate at which the agent learns (i.e.

updating weights) [5].

The action selection policy is the function that creates a balance

between exploration and exploitation.This can be done using

many functions like like ɛ-greedy, SoftMax and so on.

3.8 Deep Q- Reinforcement Learning

Deep-Q Reinforcement learning or DQRL gives an algorithm

that helps the agent learn from experience. It is a model-free

off-policy algorithm that allows a continuous state space and

discrete action space. The difference of DQRL with Q-learning

is that, it incorporates a neural network as a function approx-

imator. The mostly used neural networks are the following:

1) Convolutional neural network (CNN): Convolution-

al neural network is a type of deep neural network with

convolutional layers that are used for image classifica-

tion, medical image analysis, Natural language pro-

cessing and so on.

2) Artificial neural network (ANN): Artificial neural

network is a type of neural network with fully connect-

ed linear layers that are used in deep learning algo-

rithms. It can be used to create the algorithm efficient as

this calculates the future values of output and provides

different methods to learn and make it capable to do bet-

ter actions from its experience. The components and

process used in ANN’s are:

 Activation function: This function is used to ac-

tivate the neurons of hidden layers to provide

the best decision possible. ReLu function and

sigmoid function are the examples of activation

function.

 ANN layers: ANN consists of Input, Hidden

and output layers. Input layer takes in states as

a batch and provides the output to hidden layer

with a weighted sum and activation function.

Hidden layer neurons are responsible for all the

logical calculations behind neural networks that

provide the output. Output layer provide the q

values of actions.

 Experience reply: This is the method of storing

the experience it had for learning purpose. This

is done by creating a reply memory, where is

stores the sample batch of experience. After

storing a certain number of samples, learning

starts. It randomly chooses some number of

samples from it and use it to select actions for

the agent. This is a reusable memory.

 SoftMax function: It is a function for action se-

lection polices while functioning with neural

networks. It is nothing but give the probability

distribution of q values in the range [0,1]. The q

value with the largest probability is the q value

for best action and hence chosen. This is used in

the project make the agent explore a bit more

and hence select the best action with greater

probability, rather than taking random action.

 Back propagation: It is a method by which the

ANN calculates the gradient at each point in the

loss function. This could help in updating

weights to minimize loss, which is called sto-

chastic gradient descent.

The Deep-Q learning algorithm using ANN is as shown be-

low:

Whenever an agent is in a certain state there are some tuple

which is known to the agent i.e. (St, At, Rt, St+1), which is

current state, current actions, reward, and next state. The
DQRL algorithm based artificial neural network takes states

as input in a batch and calculates the output, which is the q

values for the possible actions.

540

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

This is done using the logical calculations and connections

inside the Artificial neural network by the layers. Every

time it reaches a new state, the experience is stored in the

memory for a process called Experience reply. From the

St+1, new target q values are calculated using the q learning

algorithm equation. This is compared with the actual q val-

ues for the agent calculated by neural network. This com-

parison formulates a function called loss function. Then

back propagation is done with the current loss function sto-

chastically lower the gradient to bring down to the local

minima of the loss function, which updates the weights to

find the best action. After having certain samples in the re-

ply memory, learning process starts and thereby slowly im-

prove by gaining more experiences. Each time it gains expe-

rience, it takes the actions by minimizing the loss function

and creating a larger cumulative reward for actions.

3.9 Kivy Simulation

Kivy is a python integrated open source simulation plat-

form that used for rapid development of applications with

user interfaces. This is multi touch application software that

can be used in many Operating systems including Mac,

Android, Linux, and Windows. It helps to create Apps for

android using python code and is easy to learn.[7] The li-

braries used for KIVY are:

▪ Kivy.properties: That allows to store the properties of

objects in the canvas. Examples are Object properties

and Numeric Properties.

▪ Kivy. Clock: That allows to count the clock time and

use functions related to it.

▪ Kivy. Vector: To calculate and use the direction of

vector of an object at a certain point. It can also be used

to store a vector in a variable.

▪ Kivy.uix.widget: This is used to inherit the property of

the widget class.

▪ Kivy.config: This is to use a function that avoids mul-

titouch.

4 PROPOSED SYSTEM

The design of the system had to go through different stages

from information gathering to a finished product. The only

idea which is known before going into the actual problem

was 1) The task, that should be achieved, 2) The language for

coding the program. The programming language which was

so sure about was Python because it is a high-level language

which provide simplicity in codes and many inbuilt frame-

work libraries for AI. The python integrated framework was

chosen to be Pytorch, as Pytorch was the best option as a

starter, because it provides the simplicity and inbuilt librar-

ies to code a neural network architecture and its associative

functions. It had good readability, that made it possible to

understand the process for a reader with ease and it also

makes debugging easy. This was highly preferred for aca-

demic research and hence it could be used in all OS plat-

forms including Windows. It also has high flexibility and

more speed on working with neural networks, when com-

pared with other platforms.

For the AI code which was developed required huge

amount of research about lot of technical terms from scratch.
A. AI Code

The design of the AI code was developed such that it fol-

lows the DQRL algorithm precisely. It acts as the brain of the

system. The neural network architecture used consists of

1 input layer, 3 hidden layers and 1 output layer. Input lay-

ers consists of 5 input neurons in which first 3 inputs are

from the sensors of the agent and 2 are the orientations of

the agent in the environment. The output layer consists of 3

output neurons, which are 3 possible actions for the agent

(left, right and forward). The AI code runs each time, it takes

an action and goes into a new state. While obtaining the re-

sults, the code was made some alterations to meet the expec-

tations about the performance of the robot. The architecture

of the neural network was changed to improve the decision-

making capability of the robot and to accurately predict the

best action. The temperature parameter was also changed to

make sure the robot is more accurate about certain actions.

This made the robot exploit the information it had in new

paths. All these solutions where tried out during the learn-

ing process and thereby had to select the suitable one which

produced more results within the training it was given.
B Simulation Environment

The idea simulation environment was emerged later after

the AI code was made. This was written using python with

the aid of imported kivy libraries. The platform runs using

the kivy.app library. The environment was designed in such

a way that it gives an option to draw a maze using Input

management in kivy. Initially, values of all the pixels in the

app platform is initialized to zero using numpy arrays from

numpy library. The maze can be drawn using the cursor as

Fig. 2.DQRL Algorithm

541

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

kivy creates a touch simulation app. The properties of the

object such as velocity, angle, sensors, signals from the sensors

and so on is obtained using the kivy.properties library. When

start is pressed, there are series of functions that is happening

behind the scene. They are:

 The origin and initial vector of the car is fixed.

 The goal is fixed, which is the nearest ver-

tex/corner to the last point in the maze.

 The walls of the maze are detected and is

given the value of 1 for each pixel.

 The agent starts to move.

The goal is recorded only once during one exploration

unless changed the orientation of the maze. Each actions

of the agent are selected by the DQRL algorithm, which

changes the state. The state is determined by the proper-

ties of the agent which is a batch of 5 variables that com-

prises of 3 signals from the sensors and two orientations

of the agent. It is by using these values and other proper-

ties like velocity, angle and so on, the properties of the

agent are updated for the next action. The updating takes

place with a given clock interval of 1/60, which is using

the kivy.clock library. The simulation environment also

provides the rewarding system for the agent. This re-

warding system is made after a lot of trial and error rep-

etitions to find the optimal rewards for different situa-

tions that could give the best results. Each time it takes

an action every property is updated, and reward is ob-

tained, which then fed into the brain. A button for saving

and loading the current brain is provided to save the

path file and re- use it in another maze. The clear button

clears all the drawings in the canvas. These are provided

using kivy.uix.button library. Other property that is

made to use from kivy is the kivy-language. It is made to

create canvas objects and its position, rotation and to re-

flect the updates in the canvas. This could also be written

using python code, but the code looks simpler and ar-

ranged by using kivy-language. This runs in parallel to

the simulation code, as this is fed back to the classes in

the simulation code that inherit from widget class library

in kivy.

5 RESULTS & DISCUSSION

The result was obtained as a plot of x-coordinate of the

agent’s position and loss function at x and y coordinates.

The graph was plotted using the values stored in the .csv

file. The plot is also shown with the values of Q for all 3

possible actions, in a tensor.

Figure 3 shows the platform or the maze the robot was trained
for. The results in the traines maze showed better perfomence
and the brain loaded with this experience can be tested in the
other mazes as well.

Figure 3: The platform

Fig. 4.Training 1

Fig.5. Training 2

542

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

The Figure 4, Figure 5 and Figure 6 shows the last 3 con-

secutive trainings of the robot in the above maze (Figure

3). The blue curve in the plot shows the plot for the pre-

vious epoch. This enables the comparison of the consecu-

tive performances.

The initial training showed in Figure 7 has a huge loss

function.

The discussions based on the observations from the re-

sults are given below:

The agent could explore and learn from a given maze

(Figure 3). The agent creates a policy within the infor-

mation obtained from the maze. The initial trainings

were time consuming as it tried to explore different op-

tions to move. The graph was plotted for different prop-

erties like velocity, orientation, position of the agent, but

the graph for loss function showed the actual perfor-

mance of the agent. The data about the exploration, i.e.

the loss function and x- coordinate of the agent for each

training is saved on .csv files. The agent’s performance

was good enough after several trainings, as it was sure

about the actions to take in most of states. The greater

number of trainings given to the agent made it accom-

plish the tasks more efficiently. The graph for the initial

trainings had larger values of loss function (Figure7) be-

cause the agent had not had any experience about the

paths sure about the actions to take. As it gained experi-

ence, the values for loss function considerably decreased

to a lower value and some of the last plots showed lower

values for the peaks. The training was ceased when it ob-

tained a lower value for the loss function. Figure 4, Fig-

ure 5 and Figure 6 has proved that the policy that the

agent selected, solved the maze within the experience it

gained from the trainings, tried to minimize the loss

function there by increasing the total cumulative reward

for those 3 actions possible (move left left, move right,

move forward).

The results obtained for the trained maze with a different

starting point (Figure 9) had almost the same range of

values for the loss function as it had for the original

maze trainings. This was because, agent was sure about

the states and actions that could possibly be done in the

maze, even if the starting point were altered. The option

for saving and loading the brain made it to be reused in

different mazes. But the accuracy was not good for initial

trainings, however, the accuracy increased within a

smaller number of trainings.

Fig. 6. Training 3

Fig. 7. Huge loss function for initial training

Fig. 8.Trained with different maze using loaded brain

543

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

When comparing the results for the initial trainings in a

different maze with loaded brain (Figure 8) with that of

the previously trained maze, shows that different maze

had much better accuracy, as it used loaded brain. But the

loaded brain produced much better results in the trained

maze with a different starting point (Figure 9), when

compared it with the results of loaded brain in a different

maze (Figure 8).

6 CONCLUSION

The models that uses Q-learning or neural network pro-

vides a good result within the training samples they had

trained for. In this paper, use of Deep-Q reinforcement

learning that used a combination of Q-learning and neu-

ral network, to find an optimal solution with the experi-

ence it gets within the training. This technique could even

outperform most of conventional maze solving tech-

niques with a better architecture or use of better functions

in the learning process, that could be considered in the fu-

ture enhancement of the work. This technique could also

be used in different fields from home-serving humanoid

robots to self-driving cars.

The development of hardware model can be considered

among one of the future improvements. The performance

can also be improved if the agent were given a greater

number of trainings and hence could gain much more ex-

perience.

7 REFERENCES

[1] Norbert-Brendan, K., & Cristian Marius, T. (2019). Autonomous Line
Maze Solver Using Artificial Intelligence. 2019 15th International Con-
ference on Engineering of Modern Electric Systems (EMES).
doi:10.1109/emes.2019.8795101

[2] T. Zhao and Y. Wang, A neural network based autonomous navigation
system using mobile robots, 2012 12th International Conference on Con-
trol Automation Robotics & Vision (ICARCV), Guangzhou,
 2012, pp. 1101-1106,
doi:10.1109/ICARCV.2012.6485311.

[3] T. Ribeiro, F. Gonçalves, I. Garcia, G. Lopes and A. F. Ribeiro, Q-
Learning for Autonomous Mobile Robot Obstacle Avoidance, 2019 IEEE
International Conference on Autonomous Robot Systems and Compe-
titions (ICARSC), Porto, Portugal, 2019, pp. 1-7, doi:
10.1109/ICARSC.2019.8733621.

[4] Markov property. (2020). Retrieved 25 June 2020, from
https://en.wikipedia.org/wiki/Markov_property

[5] Python, A. (2020). Deep Q-Learning | An Introduction To
Deep Reinforcement Learning. Retrieved 25 June 2020,
 from https://www.analyticsvidhya.com/blog/2019/0
4/introduction-deep- q- learning-python/ M. Young, The Technical Writ-
er’s Handbook. Mill Valley, CA: University Science, 1989.

[6] Reinforcement learning. (2020). Retrieved 23 June 2020, from
https://en.wikipedia.org/wiki/Reinforcement_learning

[7] Kivy: Cross-platform Python Framework for NUI. (2020). Retrieved 23
June 2020, from https://kivy.org/#home

Fig. 9.Trained Maze with a different starting position

544

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Markov_property
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://en.wikipedia.org/wiki/Reinforcement_learning
https://kivy.org/#home

